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Using stability arguments, this Brief Report suggests that a term that enhances the surface tension in the
presence of large height fluctuations should be included in the Kardar-Parisi-Zhang equation. A one-loop
renormalization group analysis then shows for interface dimensions larger than.3.3 an unstable strong-
coupling fixed point that enters the system from infinity. The relevance of these results to the roughening
transition is discussed.@S1063-651X~96!12808-7#

PACS number~s!: 05.40.1j, 64.60.Ht, 05.70.Ln, 68.35.Fx

During recent years, kinetic roughening of growing inter-
faces has been the object of intense research. Kardar, Parisi,
and Zhang~KPZ! @1# suggested the following Langevin
equation to describe the macroscopic dynamics of a stochas-
tically growing interface:
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Here, h5h(xW ,t) is the ~coarse-grained! height of the
d-dimensional surface, andh is a stochastic noise that
roughens the interface. It is uncorrelated and Gaussian dis-
tributed, i.e.,̂ h(xW ,t)&50 and

^h~xW ,t !h~xW8,t8!&52Ddd~xW2xW8!d~ t2t8!. ~2!

The first term on the right-hand side of Eq.~1! is a surface
tension that tends to smooth the interface; the second term
accounts for growth perpendicular to the surface orientation.
In principle, a constant term has to be added, which, how-
ever, can be absorbed in the definition of the height variable.

A comprehensive discussion of Eq.~1! can be found in
@2,3#. Near the stationary state, the height profile is self-
affine, i.e., invariant under a rescalingh8(xW ,t)
5b2xh(bxW ,bzt). The exponentx is the roughness exponent,
andz is the dynamical critical exponent. Equation~1! is in-
variant under the transformationh8(xW ,t)5h(xW1lvW t,t)
1vW •xW , that tilts the interface by a small anglevW @4#, leading
to the exponent relation

x1z52 . ~3!

In one dimension, the critical exponentsx andz are ex-
actly known, since the stationary solution of the Fokker-
Planck equation
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leading tox51/2 and@with Eq. ~3!# z53/2 ~see, e.g.,@5#!.
In higher dimensions, the stationary distribution is not

exactly known, and the analytical approaches that have been
taken so far, are renormalization group theory@1,6,7# and
self-consistent methods@8–13#. A renormalization group cal-
culation to one-loop order gives the following flow equations
for the parameters@1,6#
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where g5KdL
d22l2D/4n3 is an effective coupling con-

stant, withKd being the surface area of thed-dimensional
unit sphere, divided by (2p)d, andL the cutoff for the wave
vector. Equations~5! can be combined to form an equation
for g alone,
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In one dimension, this equation has a stable fixed point at
g*51/2. Inserting the fixed-point value in the flow equations
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for n andD gives again the above-mentioned values for the
critical exponents. The second fixed pointg*50 is unstable.

In two dimensions, the fixed pointg*50 is still unstable,
and there is no stable fixed point at all. In dimensions larger
than 2, the fixed pointg*50 becomes stable, and an un-
stable fixed pointg*5d(d22)/(4d26) appears that sepa-
rates the region where the flow goes to zero from the region
where it diverges. These results indicate that there exists a
phase transition from a flat interface to a rough interface for
dimensions larger than 2. Although the rough phase is pre-
sumably controlled by an attractive fixed point, this fixed
point is not accessible within a one-loop renormalization
group. A two-loop calculation yields similar results@7#, and
recently it has been shown that a finite stable fixed point is
not reached by perturbative calculations to any order@14#.

There are certainly many possible explanations for this
failure of perturbation theory~e.g., lack of a small parameter,
or nonanalytical behavior!. In this Brief Report, I suggest a
further explanation by noting that Eqs.~5! might reflect a
physical instability of Eq.~1!, and that a stabilizing term is
necessary. Integrating the flow equation forn @Eq. ~5!# in the
neighborhood ofn50, one finds thatn flows through zero
and becomes negative for some finite value ofl ~see also
@15#!. If this behavior reflects the physics of the system, it
indicates that the interface is unstable, since the surface ten-
sion becomes negative. A self-consistent mean-field theory
@16# for the KPZ equation is also unstable, suggesting an
instability, at least in high dimensions. A stable mean-field
theory is presented in@17#, where a nonlinear surface tension
is added to Eq.~1!. This mean-field theory leads to an inter-
face that has bumps of a characteristic height. Instabilities
have even been found in computer simulations of the~dis-
cretized! KPZ equation in two dimensions@17#. A continuum
limit, however, is only well defined if the discrete model
leads to a stable and smooth interface at large scales, and it
seems therefore necessary to include a stabilizing term in Eq.
~1!.

The equation studied in this Brief Report is the following
@17#:
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The new term proportional tok is generated at the second
order in the expansion for the surface tension~see, e.g.,@2#!,
and is the stabilizing term in the above-mentioned mean-field
theory @17#. It is possible that the nonlinear surface tension,
although present at microscopic scales, becomes irrelevant at
larger scales, which is indeed the case in the neighborhood of
the fixed pointsg*50 and g*5d(d22)/(4d26), as we
shall see below. We will, however, find an additional fixed
point wherek is not small, suggesting that the stabilizing
term is important even at large scales in the rough phase.

Let us first discuss the effect of the new term on the
one-dimensional KPZ equation. The stationary height distri-
bution is now

P@h~x!#5expH 2E
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Under a rescalingx→x85x/b and h→h85h/bx with
x51/2, the second term is multiplied by 1/b, while the first
term remains invariant, indicating the irrelevance ofk/D. A
one-loop renormalization group calculation for the stationary
distribution in Eq.~8! leads to the same conclusion. In mo-
mentum space, the propagator isD/nk2, and the vertex is
2(k/24D)k1k2k3k4d(k11k21k31k4). To one-loop order,
one obtains after a short calculation the following flow equa-
tions:
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leading to
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for the effective coupling constantc5(kD/2n2)K1L. The
fixed point c*50 is stable, indicating that the stabilizing
term can be neglected at large length scales. There is also an
unstable fixed point atc*521/5. For initial values
c,21/5, the flow ofc goes to2`, indicating that the sur-
face becomes unstable in this parameter region. We will not
consider further the region of negativec. Since the negative
fixed point must also occur in the flow equations found from
dynamics, Eq.~7!, it can, however, be used to make sure that
the calculations do not contain errors.

Let us now renormalize the equation of motion, Eq.~7!, to
one-loop order. Inserting the equation of motion in the
Gaussian probability distribution of the noise

W@h#}expF2
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and introducing an auxiliary fieldh̃, we obtain the weight of
a given space-time configuration@h(xW ,t)# @18#

W@h#}E D@ i h̃#exp$J@ h̃,h#%,

with the dynamical functional
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The dynamical functionalJ plays the same role in dynamical
renormalization group as the Hamiltonian in statics. The
propagators of this model are

G0~kW ,t ![^h̃~2kW ,t !h~kW ,t !&05u~ t !e2nk2t ~13!

and

C0~kW ,t ![^h~2kW ,t !h~kW ,t !&05De2nk2utu/nk2, ~14!

2112 54BRIEF REPORTS



and the vertices are

2
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Here, ^ . . . &0 indicates an average within the Gaussian
theory, where the nonlinear terms proportional tol and k
are not taken into account. Renormalization of this model is
done by first integrating over the large wave vectors
L/b,k,L, where L is the wave vector cutoff, and
b511 l is close to 1. Next, the system is rescaled to the
original size by introducing variablesk85bk, t85t/bz,
h85h/bx. To one-loop order, this gives the following flow
equations for the parameters:
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and finally for the effective coupling constants
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The diagrams contributing tok that contain fourl verti-
ces, cancel. This is a consequence of the tilt invariance of the
KPZ equation: Ifk50, the system is tilt invariant, and this
property must not change under rescaling. Therefore the flow
diagram on theg axis looks exactly as in the absence ofk.
There is consequently a fixed point atg*5c*50 that is
unstable in one dimension, and stable aboved52. The fixed
point c*50, g*5d(d22)/(4d26) is stable ind,1.5, and
is a saddle point ford.1.5. A further fixed point is given by
the intersection of the lines 22d1g(4d26)/d25c50 and
2d1g(4d210)/d2c(d14)/d50. For d.3.295, this
fixed point lies in the physically interesting region
g.0, c.0, and is given by g*5d(2d22d14)/
(8d2230d112) andc*5(6d2210d)/(8d2230d112). A

linear stability analysis reveals that this fixed point is un-
stable, with two complex eigenvalues in dimensions between
3.574 and 11.53, and with two positive eigenvalues in all
other dimensions. For dimensions close to 3.295, this fixed
point is very large, indicating that it does not split from one
of the other fixed points, but that it enters the system from
infinity. The qualitative flow diagrams in one, two, three, and
four dimensions are shown in Fig. 1.

The values of the critical exponentsz andx at the new
fixed point arez5(2d315d2244d116)/(8d2230d112)
and x5(22d3117d2226d18)/(8d2230d112). This
one-loop result is certainly still far from reflecting the true
behavior of the system, with a stable strong-coupling fixed
point that occurs already in two dimensions, and with
0<x,1 andz,d. Nevertheless, we can draw some inter-
esting conclusions:~i! In the presence of the stabilizing term,
a fixed point can be found in the strong-coupling regime.
Since this fixed point is fully repulsive in one-loop approxi-
mation, its presence does not affect the behavior of the sys-
tem at large scales. However, it is possible that this fixed
point becomes attractive and occurs already in two dimen-
sions, when a better approximation is used.~ii ! The strong-
coupling fixed point enters the system from infinity and is
not close to theg axis. If this is not just an artifact of the
perturbation theory but reflects the true behavior of the sys-
tem, there is no reason to expect that other higher-order
terms can be neglected.~iii ! The stabilizing term and other
terms that do not preserve the tilt invariance of the KPZ
equation, cannot be generated by the renormalization proce-
dure. They have to be included explicitly in the beginning.
~iv! The mapping of the KPZ equation on directed polymers
in random media via the Cole-Hopf transformation@2,3,5#
cannot be performed any more in the presence of the nonlin-
ear surface tension. Nevertheless, more direct mappings be-
tween growing Eden clusters and directed polymers@19#
suggest that the two systems should be equivalent even when
higher-order terms are taken into account. Alternatively, as
proposed in@17#, one might ask the question if the strong-
coupling behavior can at all be characterized by a single
universality class.

FIG. 1. Schematic flow diagram obtained from Eq.~16! in one,
two, three, and four dimensions.
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Calculations to higher loop orders or the inclusion of fur-
ther terms might produce better results than the one-loop
calculation presented here, but they are uncontrolled as long
as the size of the neglected terms cannot be estimated. Self-
consistent methods might be more successful than perturba-
tion theory. Mode-coupling theory has been shown to yield
excellent results in one dimension, since the neglected vertex
corrections are small@12,13#. It still has to be seen if this
holds also in higher dimensions.
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